K-Medoids Clustering Technique using Bat Algorithm
نویسندگان
چکیده
Clustering is one of the data analysis methods that are widely used in data mining. In this method, we partitioned the data into different subset which is known as cluster. Cluster analysis is the data reduction toll for classifying a “mountain‟ of information into manageable meaningful piles. This method is vast research area in the field of data mining. In this paper, a partitioning clustering method that is K-Medoids algorithm is used with Bat algorithm. We proposed a new algorithm based on the echolocation behaviour of bats to know the initial value to overcome the K-Medoids issues. In this algorithm, we can find the initial representative object easily with the help of using Bat algorithm. They provide us better cluster analysis and we can achieve efficiency. This paper introduces the combination of K-Medoids clustering algorithm and Bat Algorithm. In this paper we show the difference between K-Medoid Clustering Technique with Bat Algorithm & K-medoid itself.
منابع مشابه
Image Compression Using Partitioning Around Medoids Clustering Algorithm
Clustering is a unsupervised learning technique. This paper presents a clustering based technique that may be applied to Image compression. The proposed technique clusters all the pixels into predetermined number of groups and produces a representative color for each group. Finally for each pixel only clusters number is stored during compression. This technique can be obtained in machine learni...
متن کاملUsing Pivots to Speed-Up k-Medoids Clustering
Clustering is a key technique within the KDD process, with k-means, and the more general k-medoids, being well-known incremental partition-based clustering algorithms. A fundamental issue within this class of algorithms is to find an initial set of medians (or medoids) that improves the efficiency of the algorithms (e.g., accelerating its convergence to a solution), at the same time that it imp...
متن کاملK-medoids Clustering Using Partitioning around Medoids for Performing Face Recognition
Face recognition is one of the most unobtrusive biometric techniques that can be used for access control as well as surveillance purposes. Various methods for implementing face recognition have been proposed with varying degrees of performance in different scenarios. The most common issue with effective facial biometric systems is high susceptibility of variations in the face owing to different...
متن کاملA K-means-like Algorithm for K-medoids Clustering
Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. This paper proposes a new algorithm for K-medoids clustering which runs like the K-means algorithm and tests several methods for selecting initial medoids. The proposed algorithm calculates the distance matrix once and uses it for finding new medoids at every i...
متن کاملAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کامل